A name for the new approach

My previous work “A. Einstein versus W. Heisenberg” represents the first stone in a global new approach with interesting and unexpected consequences.


The electromagnetic fields of this new approach

As already explained, the way  of thinking exposed in [a] exhibits a deep and clear intellectual link between E. B. Christoffel’s work [01; 1869], A. Einstein’s theory [02] and E. Cartan’s approach on metrics [03].


This is of importance since:

(i)                    it is known that E. Cartan’s considerations on the preservation of the elements of length (the ds2) [04] follow a logic which is a little bit different than A. Einstein’s ones, but yield totally similar equations;


(ii)                  both approaches are yet in competition when one tries to determinate which one describes the reality with the best accuracy.


Short said: this new approach suggests that experiments should reveal no drastic differences since both theories are in fact probably the same, but just observing the same glove from two different sides.


Within that context, the approach brings a new generic formulation for the EM fields respecting the Lorentz-Einstein law of motion. These fields have very interesting and, sometimes strange, properties which I am exploring in diverse documents. For example:

           The case of invariant geometries is investigated in [b] and in [c; in French language];

           They sometimes mimic infinitesimal variations of the local 4D metric. This second point and the circumstances for which this assimilation can be realized are developed in [d] and [e].



[01} Christoffel, E. B. : Über die Transformation der homogenen Differentiale Ausdrücke zweiten Graden; Journal für die reine und angewandte Mathematik, pp. 46-70, 3 Januar 1869. This document can be studied at the University of Göttingen (Germany).

[02] (a) Einstein, A. : Die Grundlage der allgemeinen Relativitätstheorie; Annalen der Physik, vierte Folge, Band 49, (1916), N 7. (b) Einstein, A. and Minkowski, H.: The principle of relativity; translated in English by Saha, M.N. and Bose, S.N. published by the university of Calcutta, 1920; available at the Library of the M.I.T.

{03] Cartan, Elie. Les espaces métriques fondés sur la notion de d’aire dans “Actualités scientifiques et industrielles”, numéro 72, exposés de géométrie publiés sous la direction de monsieur Elie Cartan, membre de l’institut et professeur à la Sorbonne ; Paris, Hermann et Cie, éditeurs, 1933.

[04] Cartan, E. : Sur les équations de la gravitation d’Einstein ; extrait du journal de mathématiques, 1922, Fasc. numéro 2, 74 p. édité par Gauthier-Villars et Cie, libraires du bureau des longitudes de l’école Polytechnique, Paris (1922).


Personal contributions:

[a] PERIAT, T.: A. Einstein versus W. Heisenberg; ISBN 978-2-36923-096-6, EAN 9782369230966, v5, 16 September 2018.

[b] PERIAT, T.: EM fields in an invariant geometry – a first indication concerning the Yang Mills Millennium problem; ISBN 978-2-36923-031-1, EAN 9782369230311, 01 October 2018. 

[c] PERIAT, T.: Etude approfondie de la loi de Lorentz-Einstein sous l’angle des décompositions des produits tensoriels déformés, ISBN 978-2-36923-112-7, EAN 9782369231127.

[d] PERIAT, T.: The subtle interplay between electromagnetic fields and the metrics; ISBN 978-2-36923-085-4, EAN 9782369230854; v1.

[e] PERIAT, T.: GTR2- The weak gravitational fields limit, ISBN 978-2-36923-132-5, EAN 9782369231325.


© Thierry PERIAT, 14 January 2019.

Back to: A. Einstein versus W. Heisenberg